Selective transcriptional down-regulation of human rhinovirus-induced production of CXCL10 from airway epithelial cells via the MEK1 pathway.
نویسندگان
چکیده
Human rhinovirus (HRV) infections can trigger exacerbations of lower airway diseases. Infection of airway epithelial cells induces production of a number of proinflammatory chemokines that may exacerbate airway inflammation, including CXCL10, a chemoattractant for type 1 lymphocytes and NK cells. Primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line were used to examine the role of MAPK pathways in HRV-16-induced production of CXCL10. Surprisingly, PD98059 and U0126, two inhibitors of the MEK1/2-ERK MAPK pathway, significantly enhanced HRV-16-induced CXCL10 mRNA and protein. This enhancement was not seen with IFN-beta-induced production of CXCL10. Studies using small interfering RNA revealed that knockdown of MEK1, but not MEK2, was associated with enhanced HRV-induced CXCL10 production. Promoter construct studies revealed that PD98059 and U0126 enhanced HRV-16-induced transcriptional activation of CXCL10. HRV-16-induced promoter activation was regulated by two NF-kappaB binding sites, kappaB1 and kappaB2, and by an IFN-stimulated response element. Inhibitors of the MEK1/2-ERK pathway did not alter HRV-16-induced activation of tandem repeat kappaB1 or kappaB2 constructs, nor did they alter HRV-16-induced nuclear translocation/binding of NF-kappaB to either kappaB1 or kappaB2 recognition sequences. Furthermore, PD98059 and U0126 did not alter phosphorylation or degradation of IkappaBalpha. In contrast, inhibitors of the MEK1/2-ERK pathway, and small interfering RNA knockdown of MEK1, enhanced nuclear translocation/binding of IFN regulatory factor (IRF)-1 to the IFN-stimulated response element recognition sequence in HRV-16 infected cells. We conclude that activation of MEK1 selectively down-regulates HRV-16-induced expression of CXCL10 via modulation of IRF-1 interactions with the gene promoter in human airway epithelial cells.
منابع مشابه
Cigarette smoke modulates rhinovirus-induced airway epithelial cell chemokine production.
Human rhinovirus (HRV) infections induce epithelial cell production of chemokines that may contribute to the pathogenesis of exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking is the predominant risk factor for the development of COPD and also aggravates asthma symptoms. We examined whether cigarette smoke extract (CSE) modulates viral inflammation by al...
متن کاملEGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.
Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and indu...
متن کاملThe effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia
Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...
متن کاملT Lymphocytes Promote the Antiviral and Inflammatory Responses of Airway Epithelial Cells
HYPOTHESIS T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV). METHODS Differentiated primary human nasal epithelial cells (HNEC) grown on collagen-coated filters were exposed apically to HRV14 for 6 h, washed thoroughly and co-cultured with anti-CD3/CD28 activated T cells added in the basolateral compartment for 40 h. RESULTS HR...
متن کاملHuman airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection.
Human rhinovirus (HRV) infections trigger exacerbations of asthma and chronic obstructive pulmonary disease (COPD) and are associated with lymphocytic infiltration of the airways. We demonstrate that infection of primary cultures of human airway epithelial cells, or of the BEAS-2B human bronchial epithelial cell line, with human rhinovirus type 16 (HRV-16) induces expression of CXCL10 [IFN-gamm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 182 8 شماره
صفحات -
تاریخ انتشار 2009